7,932 research outputs found

    Continuous Transition between Antiferromagnetic Insulator and Paramagnetic Metal in the Pyrochlore Iridate Eu2Ir2O7

    Full text link
    Our single crystal study of the magneto-thermal and transport properties of the pyrochlore iridate Eu2Ir2O7 reveals a continuous phase transition from a paramagnetic metal to an antiferromagnetic insulator for a sample with stoichiometry within ~1% resolution. The insulating phase has strong proximity to an antiferromagnetic semimetal, which is stabilized by several % level of the off-stoichiometry. Our observations suggest that in addition to electronic correlation and spin-orbit coupling the magnetic order is essential for opening the charge gap.Comment: 6 pages, 6 figure

    Transport in gapped bilayer graphene: the role of potential fluctuations

    Full text link
    We employ a dual-gated geometry to control the band gap \Delta in bilayer graphene and study the temperature dependence of the resistance at the charge neutrality point, RNP(T), from 220 to 1.5 K. Above 5 K, RNP(T) is dominated by two thermally activated processes in different temperature regimes and exhibits exp(T3/T)^{1/3} below 5 K. We develop a simple model to account for the experimental observations, which highlights the crucial role of localized states produced by potential fluctuations. The high temperature conduction is attributed to thermal activation to the mobility edge. The activation energy approaches \Delta /2 at large band gap. At intermediate and low temperatures, the dominant conduction mechanisms are nearest neighbor hopping and variable-range hopping through localized states. Our systematic study provides a coherent understanding of transport in gapped bilayer graphene.Comment: to appear in Physical Review B: Rapid Com

    Failure of classical elasticity in auxetic foams

    Full text link
    A recent derivation [P.H. Mott and C.M. Roland, Phys. Rev. B 80, 132104 (2009).] of the bounds on Poisson's ratio, v, for linearly elastic materials showed that the conventional lower limit, -1, is wrong, and that v cannot be less than 0.2 for classical elasticity to be valid. This is a significant result, since it is precisely for materials having small values of v that direct measurements are not feasible, so that v must be calculated from other elastic constants. Herein we measure directly Poisson's ratio for four materials, two for which the more restrictive bounds on v apply, and two having values below this limit of 0.2. We find that while the measured v for the former are equivalent to values calculated from the shear and tensile moduli, for two auxetic materials (v < 0), the equations of classical elasticity give inaccurate values of v. This is experimental corroboration that the correct lower limit on Poisson's ratio is 0.2 in order for classical elasticity to apply.Comment: 9 pages, 2 figure

    Wave functions in the neighborhood of a toroidal surface; hard vs. soft constraint

    Full text link
    The curvature potential arising from confining a particle initially in three-dimensional space onto a curved surface is normally derived in the hard constraint q0q \to 0 limit, with qq the degree of freedom normal to the surface. In this work the hard constraint is relaxed, and eigenvalues and wave functions are numerically determined for a particle confined to a thin layer in the neighborhood of a toroidal surface. The hard constraint and finite layer (or soft constraint) quantities are comparable, but both differ markedly from those of the corresponding two dimensional system, indicating that the curvature potential continues to influence the dynamics when the particle is confined to a finite layer. This effect is potentially of consequence to the modelling of curved nanostructures.Comment: 4 pages, no fig

    Magnetic properties of interacting, disordered electron systems in d=2 dimensions

    Full text link
    We compute the magnetic susceptibilities of interacting electrons in the presence of disorder on a two-dimensional square lattice by means of quantum Monte Carlo simulations. Clear evidence is found that at sufficiently low temperatures disorder can lead to an enhancement of the ferromagnetic susceptibility. We show that it is not related to the transition from a metal to an Anderson insulator in two dimensions, but is a rather general low temperature property of interacting, disordered electronic systems.Comment: 5 pages, 6 figure

    Analysis of broadband microwave conductivity and permittivity measurements of semiconducting materials

    Full text link
    We perform broadband phase sensitive measurements of the reflection coefficient from 45 MHz up to 20 GHz employing a vector network analyzer with a 2.4 mm coaxial sensor which is terminated by the sample under test. While the material parameters (conductivity and permittivity) can be easily extracted from the obtained impedance data if the sample is metallic, no direct solution is possible if the material under investigation is an insulator. Focusing on doped semiconductors with largely varying conductivity, here we present a closed calibration and evaluation procedure for frequencies up to 5 GHz, based on the rigorous solution for the electromagnetic field distribution inside the sample combined with the variational principle; basically no limiting assumptions are necessary. A simple static model based on the electric current distribution proves to yield the same frequency dependence of the complex conductivity up to 1 GHz. After a critical discussion we apply the developed method to the hopping transport in Si:P at temperature down to 1 K.Comment: 9 pages, 10 figures, accepted for publication in the Journal of Applied Physic

    Quantum Spin Hall Effect

    Full text link
    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2e4π2 \frac{e}{4\pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory

    Electron Transport in Nanogranular Ferromagnets

    Full text link
    We study electronic transport properties of ferromagnetic nanoparticle arrays and nanodomain materials near the Curie temperature in the limit of weak coupling between the grains. We calculate the conductivity in the Ohmic and non-Ohmic regimes and estimate the magnetoresistance jump in the resistivity at the transition temperature. The results are applicable for many emerging materials, including artificially self-assembled nanoparticle arrays and a certain class of manganites, where localization effects within the clusters can be neglected.Comment: 4 pages, 2 figure

    Guadalcanal: The Carrier Battles

    Get PDF

    Anderson-Hubbard model with box disorder: Statistical dynamical mean-field theory investigation

    Full text link
    Strongly correlated electrons with box disorder in high-dimensional lattices are investigated. We apply the statistical dynamical mean-field theory, which treats local correlations non-perturbatively. The incorporation of a finite lattice connectivity allows for the detection of disorder-induced localization via the probability distribution function of the local density of states. We obtain a complete paramagnetic ground state phase diagram and find correlation-induced as well as disorder-induced metal-insulator transitions. Our results qualitatively confirm predictions obtained by typical medium theory. Moreover, we find that the probability distribution function of the local density of states in the metallic phase strongly deviates from a log-normal distribution as found for the non-interacting case.Comment: 13 pages, 15 figures, published versio
    corecore